
department of planetary sciences
Lunar and Planetary Laboratory

# ESTIMATING ETA EARTH: 

## The Fraction of Stars with Earth-sized Planets in the Habitable Zone

Hannah Ambrose Mentor: Dr. Gijs Mulders

THE UNIVERSITY OF ARIZONA

## OBJECTIVE

- CALCULATE $\eta_{\text {Earth }}$
- $\eta_{\text {Earth }}$ : Fraction Earth-like planets in habitable zone
- Earth-like: Terrestrial planets, radii 0.55-1. $6 \mathrm{R}_{\text {Earth }}$
- Habitable zone: Region within which a planet may host liquid water



## PROCEDURE

- Used Kepler DR-25
- Collected by Kepler Space Telescope
- Most recent release, over 9,000 objects
- "Score" value included
- "the recommended catalog for estimating planet occurrence rates" -NASA



## PROCEDURE

- Determined score cut-off
- Remove false positives
- Retain as much data as possible
- Peak in low-score objects at ~300 days
- Used peak as a flag
- Found ideal cut-off of 0.9



## PROCEDURE

- Calculated habitable zone
- Equations from

Kopparapu et. al. 2013

- Lines denote inner and outer habitable zone
- Chose Runaway Greenhouse and Early Mars lines
- Determined exoplanets within lines

Kepler Candidates of $\mathrm{R}<=$ 1.6R_Earth Stellar Effective Temperature vs Insolation Flux

- Recent Venus

Runaway Greenhouse Moist Greenhouse Maximum Greenhouse
Early Mars

Insolation Flux (Earth Flux)

## PROCEDURE

## - Calculated completeness

- Account for undetected planets
- Detections via transit method
- Probability of detection is function of planet and stellar radii
- Calculated detection efficiency
- Completeness value obtained
- Calculated Occurrence
- $\eta_{\text {Earth }}=\sum \frac{1}{\text { completeness } * \text { stars observed }}$


Detection Possible Detection Impossible


## RESULTS \& ANALYSIS

- Occurrence results
- M stars: 28.5\%
- K stars: $3.8 \%$
- G stars: 7.7\%
- K, G may be underestimates
- Previous Calculations
- Dressing and Charbonneau 2015
- Petigura et al 2013



## SIGNIFICANCE

- Future missions
- Habitable Exoplanet Imaging Mission (HabEx)
- Directly image exoplanets
- Must be nearby
- $\eta_{\text {Earth }}$ determines distance
- Closer planets mean smaller mirror, lower cost



## THANK YOU

